login
A047923
Main diagonal of array in A038150.
1
1, 6, 29, 97, 343, 1131, 3338, 10336, 29644, 88555, 260497, 728358, 2103284, 6020698, 16594432, 46969365, 128670281, 361020986, 1008411198, 2742388946, 7613161908, 20632925370, 56988914979, 156977658446, 423559114311
OFFSET
0,2
LINKS
A. S. Fraenkel, Recent results and questions in combinatorial game complexities, Theoretical Computer Science, vol. 249, no. 2 (2000), 265-288.
A. S. Fraenkel, Arrays, numeration systems and Frankenstein games, Theoret. Comput. Sci. 282 (2002), 271-284; preprint.
FORMULA
a(n) = F(2n)*n + F(2n+1)*A026351(n). - Charlie Neder, Feb 07 2019
MATHEMATICA
max = 24; t[0, 0] = 1; t[n_, 1] := t[n, 1] = 2*t[n, 0]+n+1; t[n_, 0] := t[n, 0] = Catch[For[ u = Table[t[m, k], {m, 0, n-1}, {k, 0, max - m}] // Flatten // Union; k = 1, k <= n*(n+1)/2+1 , k++, If[u[[k]] != k, Throw[k]]]]; t[n_, k_] := t[n, k] = 3*t[n, k-1] - t[n, k-2] ; a[n_] := t[n, n]; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Jan 02 2013 *)
CROSSREFS
Sequence in context: A175956 A164274 A100874 * A006816 A184130 A326805
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms from Naohiro Nomoto, Jun 07 2001
STATUS
approved