login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326805
a(n) = floor( Sum_{k>=0} n^sqrt(k) / Gamma(sqrt(k) + 1) ), where Gamma is Euler's gamma function.
0
1, 6, 29, 120, 436, 1484, 4841, 15352, 47695, 145855, 440529, 1317230, 3906114, 11502747, 33672919, 98070520, 284355536, 821268392, 2363758888, 6782327435, 19406607815, 55390260847, 157736165229, 448260958526, 1271477862231, 3600244966868, 10177939690298, 28730604992496, 80990395600321, 228017389234353, 641188474891466, 1801028679245339, 5053629451691563, 14166476265870459, 39675398491866930
OFFSET
0,2
FORMULA
a(n) = floor( 1 + n + n^sqrt(2)/Gamma(sqrt(2)+1) + n^sqrt(3)/Gamma(sqrt(3)+1) + n^2/2! + n^sqrt(5)/Gamma(sqrt(5)+1) + n^sqrt(6)/Gamma(sqrt(6)+1) + n^sqrt(7)/Gamma(sqrt(7)+1) + n^sqrt(8)/Gamma(sqrt(8)+1) + n^3/3! + ... ).
Conjecture: a(n) ~ 2*n*exp(n). - Vaclav Kotesovec, Sep 16 2019
EXAMPLE
Sample of actual sums:
n | Sum_{k>=0} n^sqrt(k) / gamma(sqrt(k) + 1)
---+------------------------------------------
0 | 1
1 | 6.0508649446787330759292180438672944450...
2 | 29.968525272075391841774353716455445560...
3 | 120.77771764573995394225247006780774786...
4 | 436.93096230917013502156544902769718883...
5 | 1484.1772399595796976511254713998475451...
6 | 4841.1041818159327351259845350253722329...
7 | 15352.745719315385435796595860510779971...
8 | 47695.139818009834449468837174136343367...
9 | 145855.25944112199314551854304392768195...
10 | 440529.00647863443505456127264544798356...
11 | 1317230.7544650817155211352616976188752...
12 | 3906114.5806224559822936126739714260866...
13 | 11502747.731829540330662657985445881916...
14 | 33672919.452042528560668451915846157284...
15 | 98070520.627899598703112706179080116295...
16 | 284355536.07050365983139838540777869579...
17 | 821268392.99830998622537351585444700214...
18 | 2363758888.2849378475946066480749874366...
19 | 6782327435.9080727036686878106620171299...
20 | 19406607815.665971565137700836799078913...
PROG
(PARI) {a(n) = if(n==0, 1, floor( suminf(k=0, n^sqrt(k) / gamma(sqrt(k) + 1) ) ) )}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A047923 A006816 A184130 * A061648 A281050 A267774
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 14 2019
STATUS
approved