OFFSET
0,2
FORMULA
a(n) = floor( 1 + n + n^sqrt(2)/Gamma(sqrt(2)+1) + n^sqrt(3)/Gamma(sqrt(3)+1) + n^2/2! + n^sqrt(5)/Gamma(sqrt(5)+1) + n^sqrt(6)/Gamma(sqrt(6)+1) + n^sqrt(7)/Gamma(sqrt(7)+1) + n^sqrt(8)/Gamma(sqrt(8)+1) + n^3/3! + ... ).
Conjecture: a(n) ~ 2*n*exp(n). - Vaclav Kotesovec, Sep 16 2019
EXAMPLE
Sample of actual sums:
n | Sum_{k>=0} n^sqrt(k) / gamma(sqrt(k) + 1)
---+------------------------------------------
0 | 1
1 | 6.0508649446787330759292180438672944450...
2 | 29.968525272075391841774353716455445560...
3 | 120.77771764573995394225247006780774786...
4 | 436.93096230917013502156544902769718883...
5 | 1484.1772399595796976511254713998475451...
6 | 4841.1041818159327351259845350253722329...
7 | 15352.745719315385435796595860510779971...
8 | 47695.139818009834449468837174136343367...
9 | 145855.25944112199314551854304392768195...
10 | 440529.00647863443505456127264544798356...
11 | 1317230.7544650817155211352616976188752...
12 | 3906114.5806224559822936126739714260866...
13 | 11502747.731829540330662657985445881916...
14 | 33672919.452042528560668451915846157284...
15 | 98070520.627899598703112706179080116295...
16 | 284355536.07050365983139838540777869579...
17 | 821268392.99830998622537351585444700214...
18 | 2363758888.2849378475946066480749874366...
19 | 6782327435.9080727036686878106620171299...
20 | 19406607815.665971565137700836799078913...
PROG
(PARI) {a(n) = if(n==0, 1, floor( suminf(k=0, n^sqrt(k) / gamma(sqrt(k) + 1) ) ) )}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 14 2019
STATUS
approved