login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267774
Decimal representation of the n-th iteration of the "Rule 207" elementary cellular automaton starting with a single ON (black) cell.
2
1, 6, 29, 123, 503, 2031, 8159, 32703, 130943, 524031, 2096639, 8387583, 33552383, 134213631, 536862719, 2147467263, 8589901823, 34359672831, 137438822399, 549755551743, 2199022731263, 8796091973631, 35184369991679, 140737484161023, 562949945032703
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Conjectures from Colin Barker, Jan 20 2016 and Apr 20 2019: (Start)
a(n) = 7*a(n-1)-14*a(n-2)+8*a(n-3) for n>3.
G.f.: (1-x+x^2-4*x^3) / ((1-x)*(1-2*x)*(1-4*x)).
(End)
MATHEMATICA
rule=207; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]], 2], {k, 1, rows}] (* Decimal Representation of Rows *)
CROSSREFS
Sequence in context: A326805 A061648 A281050 * A243474 A111644 A225618
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 20 2016
EXTENSIONS
Removed an unjustified claim that Colin Barker's conjectures are correct. Removed a program based on a conjecture. - Michael De Vlieger, Jun 13 2022
STATUS
approved