login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243474
Number of isoscent sequences of length n with exactly one descent.
2
1, 6, 29, 124, 499, 1933, 7307, 27166, 99841, 363980, 1319404, 4763927, 17155264, 61672791, 221499015, 795198010, 2854898575, 10253237150, 36846414395, 132518215788, 477049025009, 1719101735260, 6201858101192, 22399768386170, 80998670324341, 293244129636085
OFFSET
3,2
LINKS
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 3..1000
FORMULA
Recurrence: 2*(n+1)*(n+2)*(2*n+3)*(12397*n^7 - 189057*n^6 + 1186699*n^5 - 4027875*n^4 + 7966576*n^3 - 8920548*n^2 + 4726368*n - 164160)*a(n) = 2*(n+1)*(2*n + 1)*(74382*n^8 - 997975*n^7 + 5169531*n^6 - 12939205*n^5 + 13804539*n^4 + 4032932*n^3 - 23655372*n^2 + 20014848*n - 1477440)*a(n-1) - 2*(347116*n^9 - 3797013*n^8 + 13426236*n^7 - 10697862*n^6 - 45689304*n^5 + 115458855*n^4 - 47561392*n^3 - 85364460*n^2 + 57311424*n - 1477440)*a(n-2) - (1822359*n^10 - 28485611*n^9 + 180879786*n^8 - 605859318*n^7 + 1141835871*n^6 - 1127112699*n^5 + 285267312*n^4 + 592120604*n^3 - 783881808*n^2 + 409889664*n - 50388480)*a(n-3) - 2*(247940*n^10 - 5628293*n^9 + 49022694*n^8 - 212356554*n^7 + 479773884*n^6 - 459074385*n^5 - 250049558*n^4 + 1020252416*n^3 - 830684880*n^2 + 423719136*n - 432293760)*a(n-4) + 2*(n-4)*(2070299*n^9 - 30481583*n^8 + 181205557*n^7 - 572698754*n^6 + 1060137133*n^5 - 1157719883*n^4 + 582047111*n^3 + 378941580*n^2 - 897279300*n + 403878960)*a(n-5) + 6*(n-5)*(n-4)*(768614*n^8 - 9316516*n^7 + 43281239*n^6 - 101853145*n^5 + 131895047*n^4 - 75435871*n^3 - 41445228*n^2 + 118112292*n - 101468592)*a(n-6) + 117*(n-6)*(n-5)*(n-4)*(12397*n^7 - 102278*n^6 + 312694*n^5 - 496340*n^4 + 374821*n^3 + 103402*n^2 - 440568*n + 590400)*a(n-7). - Vaclav Kotesovec, Jun 06 2014
a(n) ~ c * d^n / n^(3/2), where d = 1/6*(847+33*sqrt(33))^(1/3) + 44/(3*(847+33*sqrt(33))^(1/3)) + 2/3 = 3.802619145513318... is the root of the equation 4*d^3 - 8*d^2 - 24*d - 13 = 0 and c = sqrt(2565 + 2*(3*(692007507 - 5151139*sqrt(33)))^(1/3) + 2*(3*(692007507 + 5151139*sqrt(33)))^(1/3)) / (4*sqrt(21*Pi)) = 2.695007157151120689163873119078514352395445402... . - Vaclav Kotesovec, Jun 06 2014, updated Mar 16 2024
EXAMPLE
a(4) = 6: [0,0,1,0], [0,0,2,0], [0,0,2,1], [0,1,0,0], [0,1,0,1], [0,1,1,0].
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n<1, 1, Expand[Sum[If[j<i, x, 1]*b[n-1, j, t + If[j == i, 1, 0]], {j, 0, t+1}]]]; a[n_] := Coefficient[b[n-1, 0, 0], x, 1]; Table[a[n], {n, 3, 40}] (* Jean-François Alcover, Feb 09 2015, after A242352 *)
CROSSREFS
Column k=1 of A242352.
Sequence in context: A061648 A281050 A267774 * A111644 A225618 A081278
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Jun 05 2014
STATUS
approved