login
A281050
Number of n X 2 0..1 arrays with no element equal to more than one of its horizontal and antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
1
0, 1, 6, 29, 122, 468, 1686, 5807, 19338, 62731, 199264, 622152, 1914780, 5821645, 17515566, 52221929, 154461110, 453654108, 1324053522, 3842768987, 11096398578, 31895230903, 91296545404, 260329675536, 739725018360, 2095147333465
OFFSET
1,3
LINKS
FORMULA
Empirical: a(n) = 9*a(n-1) - 30*a(n-2) + 45*a(n-3) - 30*a(n-4) + 9*a(n-5) - a(n-6).
Empirical g.f.: x^2*(1 - 3*x + 5*x^2 - 4*x^3) / (1 - 3*x + x^2)^3. - Colin Barker, Feb 15 2019
EXAMPLE
Some solutions for n=4:
..0..0. .0..0. .0..1. .0..0. .0..0. .0..1. .0..0. .0..0. .0..0. .0..0
..0..0. .1..1. .1..1. .0..0. .0..1. .1..1. .1..1. .1..1. .0..0. .0..1
..1..0. .1..1. .0..0. .1..0. .0..1. .1..0. .0..0. .1..1. .1..1. .1..1
..0..1. .0..0. .0..1. .1..0. .1..1. .1..0. .0..0. .0..1. .0..1. .0..0
CROSSREFS
Column 2 of A281056.
Sequence in context: A184130 A326805 A061648 * A267774 A243474 A111644
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 13 2017
STATUS
approved