login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259801
Numbers such that it and its two neighbors are products of 8 distinct primes.
8
102099792179230, 117092756174954, 136745109677256, 162338633743714, 167791215874866, 178571623400554, 183789996331514, 188284244083286, 211843056257854, 217181576415166, 224685381821406, 230455538364206, 234115003437666, 247662164889294, 265223112108514, 265730468260830, 266665427846390, 267248859559214, 268021718391414, 274354628059534
OFFSET
1,1
COMMENTS
A subsequence of A169834.
With bound set at 4*10^14, the linked-to PARI program completed its run in about 2 days (producing 48 terms). The program fixes prospective smallest 4 prime factors so their product is at or above the minimum possible of the largest of 3 products of 4 primes without overlap (A260075(4)=20553), doing bound-restricted testing for the larger 4 in turn for each of these smaller quadruples. This is just one of a variety of ways of fixing a prospective trio by specifying one member as being within a certain range and satisfying the criterion. The program mostly avoids duplicates but does not entirely. See the part of the corresponding program at A259350 immediately before the print command for a fix.
The efficiency the program seems to generate empirically would come from the specification of product of 4 smaller primes as greater than a certain value and whole product within a certain range. Running through all even products of 8 distinct primes between the cube root of the (3n)-th primorial and the bound given would be a simpler way but one not so statistically limited (with a proportionally larger number of candidates). Note: The author is not making a claim of maximal efficiency, just of marked improvements over some simpler approaches.
a(1)=A093550(8).
LINKS
James G. Merickel, PARI program
EXAMPLE
102099792179229=3*13*19*53*83*131*181*1321, 102099792179230=2*5*17*43*127*229*283*1697, and 102099792179231=7*11*23*29*31*71*113*7993. No smaller collection meets the criterion, so a(1)=102099792179230.
PROG
See above link to PARI program generating terms under 4*10^14 (out of order and with some duplicates).
KEYWORD
nonn
AUTHOR
James G. Merickel, Jul 14 2015
STATUS
approved