login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288285
a(n) is the number of rooted maps with n edges and 5 faces on an orientable surface of genus 5.
10
79553497760100, 9220982517965400, 528887751025584600, 20269771718252599536, 588564117958709029644, 13881153040572190501512, 277921666244135490925320, 4869474711666664850333856, 76330117260895762678976496, 1088463806617771584122226336, 14304840156674599302991391808, 175067544404400195382759080000
OFFSET
14,1
LINKS
Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.
FORMULA
G.f.: -12*y*(y-1)^14*(3140032216620*y^13 + 168745438117215*y^12 + 1823095410398560*y^11 + 3655757687054272*y^10 - 10735527168335100*y^9 - 13611993085165141*y^8 + 33238393245141476*y^7 - 1171322344070974*y^6 - 27716201280764020*y^5 + 15575605858027959*y^4 + 683444198956148*y^3 - 2374578542797076*y^2 + 479239083620192*y - 11169074253456)/(y-2)^41, where y=A000108(x).
MATHEMATICA
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 5, 5];
Table[a[n], {n, 14, 25}] (* Jean-François Alcover, Oct 17 2018 *)
CROSSREFS
Rooted maps of genus 5 with n edges and f faces for 1<=f<=10: A288281 f=1, A288282 f=2, A288283 f=3, A288284 f=4, this sequence, A288286 f=6, A288287 f=7, A288288 f=8, A288289 f=9, A288290 f=10.
Column 5 of A269925.
Cf. A000108.
Sequence in context: A139575 A317874 A185432 * A053586 A027605 A259801
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Jun 11 2017
STATUS
approved