login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248202
Sphenic numbers (A007304) whose neighbors are sphenic.
8
1310, 1886, 2014, 2666, 3730, 5134, 6062, 6214, 6306, 6478, 6854, 6986, 7258, 7954, 8394, 8534, 8786, 9214, 9454, 9822, 9878, 10282, 10946, 11606, 12454, 12566, 12802, 12858, 12994, 13054, 14134, 14314, 14330, 14466, 14818, 15086, 15266, 15806, 16114, 16134
OFFSET
1,1
COMMENTS
Subsequence of A169834 and offset by 1 from the values in A066509.
LINKS
Wikipedia, Sphenic number
FORMULA
a(n) = A066509(n)+1.
EXAMPLE
1309, 1310 and 1311 factor as 7*11*17, 2*5*131 and 3*19*23, respectively. No smaller such trio exists, so a(1)=1310.
MATHEMATICA
a248202[n_Integer] := Select[Range[n],
And[And[PrimeNu[#] == 3, PrimeNu[# - 1] == 3, PrimeNu[# + 1] == 3], And[PrimeOmega[#] == 3, PrimeOmega[# - 1] == 3, PrimeOmega[# + 1] == 3]] &]; a248202[20166](* Michael De Vlieger, Nov 06 2014 *)
f[n_]:=Last/@FactorInteger[n]=={1, 1, 1}; lst={}; Do[If[f[n]&&f[n+1]&&f[n+2], AppendTo[lst, n + 1]], {n, 17000}]; lst (* Vincenzo Librandi, Jul 24 2015 *)
Mean/@SequencePosition[Table[If[PrimeNu[n]==PrimeOmega[n]==3, 1, 0], {n, 20000}], {1, 1, 1}] (* Harvey P. Dale, Dec 08 2024 *)
PROG
(PARI) sq(n)=bigomega(n)==3 && omega(n)==3;
for(n=3, 10^5, if(sq(n-1)&&sq(n)&&sq(n+1), print1(n, ", ")));
\\ Joerg Arndt, Oct 18 2014
KEYWORD
nonn,changed
AUTHOR
James G. Merickel, Oct 03 2014
STATUS
approved