login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248199
Initial primes of sets of 8 consecutive primes all different by modulo 30.
1
2, 3, 5, 7, 11, 13, 17, 19, 47, 499, 673, 677, 769, 1277, 1279, 1327, 1697, 2357, 3163, 3907, 4057, 4133, 4909, 5479, 5669, 6047, 7283, 9349, 9533, 9539, 9547, 9923, 10667, 11149, 11159, 12277, 12841, 17167, 17431, 17443, 21101, 21379, 22549, 22567, 22993, 24181, 24337, 24659, 24671, 25219, 26161
OFFSET
1,1
LINKS
A. Granville and G. Martin, Prime number races, arXiv:math/0408319 [math.NT], 2004.
EXAMPLE
47 is a term because 8 consecutive primes {47, 53, 59, 61, 67, 71, 73, 79} are congruent to {17, 23, 29, 1, 7, 11, 13, 19} mod 30; all distinct by modulo 30.
PROG
(PARI) isok(n) = {v = []; for (i=0, 7, pm = prime(i+n) % 30; if (! vecsearch(v, pm), v = vecsort(concat(v, pm)), return (0)); ); return (1); }
lista(nn) = {forprime(p=2, nn, if (isok(primepi(p)), print1(p, ", ")); ); } \\ Michel Marcus, Oct 06 2014
CROSSREFS
Cf. A095959 (primes modulo 30).
Sequence in context: A321150 A088415 A175063 * A198196 A139054 A290959
KEYWORD
nonn
AUTHOR
Zak Seidov, Oct 03 2014
STATUS
approved