login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256668
a(n) = 3*B*C*(n mod A) + 5*A*C*(n mod B) + 2*A*B*(n mod C) with A=7, B=11, C=17.
4
1310, 2620, 3930, 5240, 6550, 7860, 5243, 6553, 7863, 9173, 3938, 5248, 6558, 3941, 5251, 6561, 5253, 6563, 7873, 9183, 6566, 1331, 2641, 3951, 5261, 6571, 7881, 5264, 6574, 7884, 9194, 10504, 5269, 3961, 1344, 2654, 3964, 5274, 6584, 7894
OFFSET
1,1
COMMENTS
After 0 it cycles again from 1310 (a(1309)=0 so there are 1309 (A*B*C) terms).
This is another variation on A256496, where a(n) = B*C*(n mod A) + A*C*(n mod B) + A*B*(n mod C), modified to take the values A=7, B=11, C=17 and still maintain the equivalence a(n) mod ABC = n mod ABC.
Here some modification is required (to maintain that equivalence) so that 'BC' + 'AC' + 'AB' = ABC + 1 where 'BC', 'AC' and 'AB' are the coefficients. Therefore, a(n) = 3B*C*(n mod A) + 5A*C*(n mod B) + 2A*B*(n mod C) so that 3*11*17 + 5*7*17 + 2*7*11 =7*11*17 + 1 = 561 + 595 + 154 = 1310.
This is an example with 3 modifications.
a(n) = n for n = 154, 308, 462, 561, 595, 616, 715, 749, 770, 869, 903, 924, 1023, 1057, 1078, 1122, 1156, 1177, 1190, 1211, 1232, 1276.
LINKS
Index entries for linear recurrences with constant coefficients, signature (-2, -3, -4, -5, -6, -7, -7, -7, -7, -7, -6, -5, -4, -3, -2, -1, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 6, 5, 4, 3, 2, 1).
FORMULA
G.f.: -x*(11780*x^31 +34030*x^30 +65440*x^29 +104700*x^28 +150500*x^27 +201530*x^26 +256480*x^25 +306187*x^24 +350651*x^23 +389872*x^22 +423850*x^21 +447350*x^20 +461682*x^19 +468156*x^18 +468082*x^17 +462770*x^16 +453530*x^15 +432510*x^14 +403638*x^13 +368224*x^12 +327578*x^11 +283010*x^10 +235830*x^9 +187348*x^8 +144109*x^7 +106113*x^6 +73360*x^5 +45850*x^4 +26200*x^3 +13100*x^2 +5240*x +1310) / ((x -1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)*(x^10 +x^9 +x^8 +x^7 +x^6 +x^5 +x^4 +x^3 +x^2 +x +1)*(x^16 +x^15 +x^14 +x^13 +x^12 +x^11 +x^10 +x^9 +x^8 +x^7 +x^6 +x^5 +x^4 +x^3 +x^2 +x +1)). - Colin Barker, Apr 14 2015
MATHEMATICA
Table[561*Mod[n, 7]+595*Mod[n, 11]+154*Mod[n, 17], {n, 40}] (* or *) LinearRecurrence[{-2, -3, -4, -5, -6, -7, -7, -7, -7, -7, -6, -5, -4, -3, -2, -1, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 6, 5, 4, 3, 2, 1}, {1310, 2620, 3930, 5240, 6550, 7860, 5243, 6553, 7863, 9173, 3938, 5248, 6558, 3941, 5251, 6561, 5253, 6563, 7873, 9183, 6566, 1331, 2641, 3951, 5261, 6571, 7881, 5264, 6574, 7884, 9194, 10504, 5269}, 40] (* Harvey P. Dale, May 03 2023 *)
PROG
(PARI) my(A=7, B=11, C=17, nn = A*B*C); vector(nn, n, 3*B*C*(n % A) + 5*A*C*(n % B) + 2*A*B*(n % C)) \\ Michel Marcus, Apr 14 2015
(Magma) A:=7; B:=11; C:17; [3*B*C*(n mod A)+5*A*C*(n mod B)+2*A*B*(n mod C): n in [1..60]]; // Bruno Berselli, Apr 14 2015
CROSSREFS
Cf. A255818 for an example with 1 modification and A256643 for 2 modifications.
Sequence in context: A242606 A066509 A248202 * A205301 A320506 A322834
KEYWORD
nonn,easy
AUTHOR
Aaron Kastel, Apr 07 2015
STATUS
approved