login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255818
a(n) = 2*B*C*(n mod A) + A*C*(n mod B) + A*B*(n mod C) with A=3, B=5, C=7.
4
106, 212, 108, 214, 215, 111, 112, 218, 114, 115, 221, 117, 223, 224, 15, 121, 227, 123, 229, 230, 21, 127, 233, 129, 130, 236, 132, 133, 239, 30, 136, 242, 138, 244, 140, 36, 142, 248, 144, 145, 251, 42, 148, 254, 45, 151, 257, 153, 154, 155, 51, 157, 263, 159
OFFSET
1,1
COMMENTS
After 0 it cycles again from 106 (a(105)=0 so there are 105 (A*B*C) terms).
This is another variation on A256496, where a(n) = B*C*(n mod A) + A*C*(n mod B) + A*B*(n mod C), modified to take the values A=3, B=5, C=7 and still maintain the equivalence a(n) mod ABC = n mod ABC.
Here modification is required (to maintain that equivalence) so that 'BC' + 'AC' + 'AB' = ABC + 1 where 'BC', 'AC' and 'AB' are the coefficients. Therefore, a(n)= 2B*C*(n mod A) + A*C*(n mod B) + A*B*(n mod C) so that 2*5*7 + 3*7 + 3*5 = 3*5*7 = 70 + 21 + 15 = 106.
This is an example with 1 modification.
a(n) = n for n: 15, 21, 30, 36, 42, 45, 51, 57, 60, ..., 314. - Robert G. Wilson v, Apr 07 2015
LINKS
Ray Chandler, Table of n, a(n) for n = 1..1000 (first 105 terms from Aaron Kastel)
Index entries for linear recurrences with constant coefficients, signature (-2, -3, -3, -3, -2, -1, 1, 2, 3, 3, 3, 2, 1).
FORMULA
G.f.: -x*(314*x^11 +836*x^10 +1460*x^9 +1976*x^8 +2384*x^7 +2475*x^6 +2355*x^5 +1921*x^4 +1384*x^3 +850*x^2 +424*x +106) / ((x -1)*(x^2 +x +1)*(x^4 +x^3 +x^2 +x +1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)). - Colin Barker, Apr 14 2015
MATHEMATICA
f[n_] := 70 Mod[n, 3] + 21 Mod[n, 5] + 15 Mod[n, 7]; Array[f, 105] (* Robert G. Wilson v, Apr 07 2015 *)
LinearRecurrence[{-2, -3, -3, -3, -2, -1, 1, 2, 3, 3, 3, 2, 1}, {106, 212, 108, 214, 215, 111, 112, 218, 114, 115, 221, 117, 223}, 60] (* Harvey P. Dale, Sep 21 2024 *)
PROG
(Magma) A:=3; B:=5; C:=7; [2*B*C*(n mod A)+A*C*(n mod B)+A*B*(n mod C): n in [1..60]]; // Bruno Berselli, Apr 14 2015
CROSSREFS
Cf. A256643 for an example with 2 modifications and A256668 for 3 modifications.
Sequence in context: A044338 A044719 A260202 * A090775 A213458 A260937
KEYWORD
nonn,easy
AUTHOR
Aaron Kastel, Apr 07 2015
STATUS
approved