login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n^3 into cubes.
26

%I #24 Dec 29 2016 16:04:53

%S 1,1,2,5,17,62,258,1050,4365,18012,73945,301073,1214876,4852899,

%T 19187598,75070201,290659230,1113785613,4224773811,15866483556,

%U 59011553910,217410395916,793635925091,2871246090593,10297627606547,36620869115355,129166280330900

%N Number of partitions of n^3 into cubes.

%H Alois P. Heinz and Vaclav Kotesovec, <a href="/A259792/b259792.txt">Table of n, a(n) for n = 0..173</a> (terms 0..120 from Alois P. Heinz)

%H H. L. Fisher, <a href="/A027601/a027601.pdf">Letter to N. J. A. Sloane, Mar 16 1989</a>

%H G. H. Hardy and S. Ramanujan, <a href="http://ramanujan.sirinudi.org/Volumes/published/ram33.html">Asymptotic formulae in combinatory analysis</a>, Proceedings of the London Mathematical Society, 2, XVI, 1917, p. 373.

%F a(n) = [x^(n^3)] Product_{j>=1} 1/(1-x^(j^3)). - _Alois P. Heinz_, Jul 10 2015

%F a(n) = A003108(n^3). - _Vaclav Kotesovec_, Aug 19 2015

%F a(n) ~ exp(4 * (Gamma(1/3)*Zeta(4/3))^(3/4) * n^(3/4) / 3^(3/2)) * (Gamma(1/3)*Zeta(4/3))^(3/4) / (24*Pi^2*n^(15/4)) [after Hardy & Ramanujan, 1917]. - _Vaclav Kotesovec_, Dec 29 2016

%p b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,

%p b(n, i-1) +`if`(i^3>n, 0, b(n-i^3, i)))

%p end:

%p a:= n-> b(n^3, n):

%p seq(a(n), n=0..26); # _Alois P. Heinz_, Jul 10 2015

%t $RecursionLimit = 1000; b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[ i^3>n, 0, b[n-i^3, i]]]; a[n_] := b[n^3, n]; Table[a[n], {n, 0, 26}] (* _Jean-François Alcover_, Jul 15 2015, after _Alois P. Heinz_ *)

%Y A row of the array in A259799.

%Y Cf. A279329.

%Y Cf. A001156, A003108, A046042.

%Y Cf. A037444, A259793.

%K nonn

%O 0,3

%A _N. J. A. Sloane_, Jul 06 2015

%E More term from _Alois P. Heinz_, Jul 10 2015