OFFSET
0,3
REFERENCES
H. S. Wilf, Generatingfunctionology, Academic Press, NY, 1990.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..600
FORMULA
a(n) = -Sum_{i=ceiling(n/2)..n} binomial(i,n-i)*binomial(n+i-2,n-2)/(n -1), n>1, a(0)=1, a(1)=-1.
a(n) = -Sum_{i=1..n} A001002(n-i)*a(i), a(0)=1.
From Paul D. Hanna, Mar 19 2013: (Start)
G.f. satisfies:
(1) A(x) = 1 - x/A(x) - x^2/A(x)^2.
(2) A(x - x^2 - x^3) = 1 - x - x^2.
(4) [x^n] A(x)^(n+1) = 0 for n>2. (End)
Conjecture: 25*n*(n-1)*a(n) - 5*(n-1)*(25*n-42)*a(n-1) + 3*(-23*n^2 + 59*n + 4)*a(n-2) + 9*(3*n-10)*(3*n-11)*a(n-3)=0. - R. J. Mathar, May 23 2014
Maple's sumrecursion command gives the second-order recurrence equation: 5*n*(n - 1)*(4*n - 9)*a(n) = 2*(n - 1)*(44*n^2 - 165*n + 150)*a(n-1) + 3*(4*n - 5)(3*n - 7)(3*n - 8)*a(n-2) with initial conditions a(1) = -1 and a(2) = -2. Mathar's conjectured third-order recurrence follows from this. - Peter Bala, Feb 15 2015
EXAMPLE
G.f.: A(x) = 1 - x - 2*x^2 - 5*x^3 - 17*x^4 - 64*x^5 - 259*x^6 - 1098*x^7 - ...
MATHEMATICA
CoefficientList[x/InverseSeries[Series[x-x^2-x^3, {x, 0, 20}], x], x] (* Vaclav Kotesovec, Feb 15 2015 *)
PROG
(Maxima)
a(n):=if n=0 then 1 else if n=1 then -1 else -sum(binomial(i, n-i)*binomial(n+i-2, n-2), i, ceiling(n/2), n)/(n-1);
(PARI) {a(n)=polcoeff(x/serreverse(x-x^2-x^3+x^2*O(x^n)), n)} \\ Paul D. Hanna, Mar 19 2013
(PARI) /* Using Vladimir Kruchinin's binomial sum: */
{a(n)=if(n==0, 1, if(n==1, -1, -sum(i=n\2, n, binomial(i, n-i)*binomial(n+i-2, n-2))/(n-1)))} \\ Paul D. Hanna, Mar 19 2013
(PARI) {a(n)=local(A=1); for(i=1, n, A=1-x/A-x^2/A^2+x*O(x^n)); polcoeff(A, n)} \\ Paul D. Hanna, Mar 19 2013
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Vladimir Kruchinin, Mar 19 2013
STATUS
approved