OFFSET
0,8
COMMENTS
FORMULA
G.f.: G(t,x) = Product_{i>0} (1-x^(h(i)))/((1-x^i)*(1-t*x^(h(i)))), where h(i) = 2^i - 1.
EXAMPLE
T(7,3) = 4 because we have [2,2,1,1,1], [3,2,1,1], [3,3,1], and [4,1,1,1] (the partitions of 7 that have 3 Mersenne number parts).
Triangle starts:
1;
0,1;
1,0,1;
0,2,0,1;
2,0,2,0,1;
1,3,0,2,0,1;
MAPLE
h := proc (i) options operator, arrow: 2^i-1 end proc: g := product((1-x^h(i))/((1-x^i)*(1-t*x^h(i))), i = 1 .. 30): gser := simplify(series(g, x = 0, 30)): for n from 0 to 18 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 18 do seq(coeff(P[n], t, j), j = 0 .. n) end do; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Nov 13 2015
STATUS
approved