login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321434
Triangle read by rows; T(n,k) is the number of achiral rows of n colors using exactly k colors.
0
1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 6, 6, 0, 1, 6, 6, 0, 1, 14, 36, 24, 0, 1, 14, 36, 24, 0, 1, 30, 150, 240, 120, 0, 1, 30, 150, 240, 120, 0, 1, 62, 540, 1560, 1800, 720, 0, 1, 62, 540, 1560, 1800, 720, 0, 1, 126, 1806, 8400, 16800, 15120, 5040, 0, 1, 126, 1806, 8400, 16800, 15120, 5040
OFFSET
0,8
COMMENTS
Each zero in the data is the beginning of a new row.
Same as A131689, with rows (except for the first) repeated. - Joerg Arndt, Sep 08 2019
FORMULA
T(n,k) = k!*S2(ceiling(n/2),k), where S2 is the Stirling subset number A008277.
EXAMPLE
The triangle begins with T(0,0):
1
0 1
0 1
0 1 2
0 1 2
0 1 6 6
0 1 6 6
0 1 14 36 24
0 1 14 36 24
0 1 30 150 240 120
0 1 30 150 240 120
0 1 62 540 1560 1800 720
0 1 62 540 1560 1800 720
0 1 126 1806 8400 16800 15120 5040
0 1 126 1806 8400 16800 15120 5040
0 1 254 5796 40824 126000 191520 141120 40320
0 1 254 5796 40824 126000 191520 141120 40320
0 1 510 18150 186480 834120 1905120 2328480 1451520 362880
For T(7,2)=14, the rows are AAABAAA, AABABAA, AABBBAA, ABAAABA, ABABABA, ABBABBA, ABBBBBA, BAAAAAB, BAABAAB, BABABAB, BABBBAB, BBAAABB, BBABABB, and BBBABBB.
MATHEMATICA
Table[k! StirlingS2[Ceiling[n/2], k], {n, 0, 18}, {k, 0, (n+1)/2}] // Flatten
CROSSREFS
Cf. A019538 (oriented), A305621 (unoriented), A305622 (chiral).
Cf. A131689.
Sequence in context: A096397 A337547 A291969 * A103919 A263234 A264394
KEYWORD
nonn,easy,tabf
AUTHOR
Robert A. Russell, Nov 09 2018
STATUS
approved