login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321431
Expansion of Product_{i>0, j>0} 1/(1 - x^(i^2 + j^2)).
4
1, 0, 1, 0, 1, 2, 1, 2, 2, 2, 7, 2, 7, 6, 7, 14, 8, 16, 18, 16, 34, 20, 38, 40, 39, 68, 54, 78, 91, 84, 143, 116, 161, 184, 185, 270, 252, 312, 372, 372, 518, 494, 607, 704, 736, 944, 965, 1130, 1311, 1378, 1723, 1784, 2081, 2360, 2548, 3048, 3250, 3704, 4196, 4544
OFFSET
0,6
LINKS
FORMULA
G.f.: Product_{k>0} 1/(1 - x^k)^A063725(k).
MATHEMATICA
nmax = 100; A063725 = Rest[CoefficientList[Series[(EllipticTheta[3, 0, x] - 1)^2/4, {x, 0, nmax}], x]]; s = 1; Do[s *= Sum[(-1)^j*Binomial[A063725[[k]], j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]]; , {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 09 2018 *)
CROSSREFS
Convolution inverse of A321430.
Sequence in context: A108115 A089254 A279861 * A338984 A140085 A071445
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 09 2018
STATUS
approved