login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327849
Nontrivial odd solutions n to P(n) == 1 + r*Sum_{i=1..d(n)} x^i (mod m) where P(n) is the n-th Stern polynomial, d(n) is the degree of P(n), r=1, m=3.
2
157, 4789, 12615, 46257, 78765, 120147, 201069, 46343011, 156666811, 1235649115, 45728246203, 78080354869, 95882561515, 775752845083
OFFSET
1,1
COMMENTS
Nontrivial means solutions neither of the form 2^(k+1)-1 nor of the form 2^(k+2)-3.
LINKS
Maciej Ulas, Strong arithmetic property of certain Stern polynomials, arXiv:1909.10844 [math.NT], 2019. See Table 3 p. 12.
PROG
(PARI) pol(n) = {if (n<2, return (n)); if (n%2, pol((n+1)/2) + pol((n-1)/2), x*pol(n/2)); } \\ A125184
ispow2(n) = if ((n==1) || (n==2), return (1)); my(p); isprimepower(n, &p) && (p==2);
istrivial(n) = ispow2(n+1) || ispow2(n+3);
isokrm(n, r, m) = {if ((n%2) && !istrivial(n), my(p=pol(n), d=poldegree(p)); Mod(p, m) == Mod(1+r*sum(i=1, d, x^i), m); ); }
lista(nn) = forstep(n=1, nn, 2, if (isokrm(n, 1, 3), print1(n, ", ")));
CROSSREFS
Cf. A125184 (Stern polynomials), A327848, A327850.
Sequence in context: A212237 A078964 A171345 * A066823 A213469 A074220
KEYWORD
nonn,more
AUTHOR
Michel Marcus, Sep 28 2019
STATUS
approved