login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327847
Number of colored compositions of n using all colors of a 2-set such that all parts have different color patterns and the patterns for parts i have i colors in (weakly) increasing order.
2
0, 0, 3, 10, 39, 100, 303, 782, 2009, 5388, 12839, 32658, 79673, 191500, 459745, 1090622, 2569597, 5932304, 13906405, 31740090, 72160311, 164296384, 369673125, 827781598, 1834885695, 4076433368, 8966677703, 19639987986, 42751905899, 92703023676, 200647122467
OFFSET
0,3
LINKS
EXAMPLE
a(3) = 10: 3aab, 3abb, 2aa1b, 2ab1a, 2ab1b, 2bb1a, 1a2ab, 1a2bb, 1b2aa, 1b2ab.
MAPLE
b:= proc(n, i, k, p) option remember; `if`(n=0, p!,
`if`(i<1, 0, add(b(n-i*j, min(n-i*j, i-1), k, p+j)*
binomial(binomial(k+i-1, i), j), j=0..n/i)))
end:
a:= n-> (k-> add(b(n$2, i, 0)*(-1)^(k-i)*binomial(k, i), i=0..k))(2):
seq(a(n), n=0..37);
CROSSREFS
Column k=2 of A327245.
Sequence in context: A103296 A259859 A298940 * A111749 A149048 A149049
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 27 2019
STATUS
approved