login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Nontrivial odd solutions n to P(n) == 1 + r*Sum_{i=1..d(n)} x^i (mod m) where P(n) is the n-th Stern polynomial, d(n) is the degree of P(n), r=1, m=3.
2

%I #11 Sep 28 2019 22:29:50

%S 157,4789,12615,46257,78765,120147,201069,46343011,156666811,

%T 1235649115,45728246203,78080354869,95882561515,775752845083

%N Nontrivial odd solutions n to P(n) == 1 + r*Sum_{i=1..d(n)} x^i (mod m) where P(n) is the n-th Stern polynomial, d(n) is the degree of P(n), r=1, m=3.

%C Nontrivial means solutions neither of the form 2^(k+1)-1 nor of the form 2^(k+2)-3.

%H Maciej Ulas, <a href="https://arxiv.org/abs/1909.10844">Strong arithmetic property of certain Stern polynomials</a>, arXiv:1909.10844 [math.NT], 2019. See Table 3 p. 12.

%o (PARI) pol(n) = {if (n<2, return (n)); if (n%2, pol((n+1)/2) + pol((n-1)/2), x*pol(n/2));} \\ A125184

%o ispow2(n) = if ((n==1) || (n==2), return (1)); my(p); isprimepower(n,&p) && (p==2);

%o istrivial(n) = ispow2(n+1) || ispow2(n+3);

%o isokrm(n, r, m) = {if ((n%2) && !istrivial(n), my(p=pol(n), d=poldegree(p)); Mod(p, m) == Mod(1+r*sum(i=1, d, x^i), m););}

%o lista(nn) = forstep(n=1, nn, 2, if (isokrm(n, 1, 3), print1(n, ", ")));

%Y Cf. A125184 (Stern polynomials), A327848, A327850.

%K nonn,more

%O 1,1

%A _Michel Marcus_, Sep 28 2019