The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A157505 a(n) = 1458*n + 18. 3
 1476, 2934, 4392, 5850, 7308, 8766, 10224, 11682, 13140, 14598, 16056, 17514, 18972, 20430, 21888, 23346, 24804, 26262, 27720, 29178, 30636, 32094, 33552, 35010, 36468, 37926, 39384, 40842, 42300, 43758, 45216, 46674, 48132, 49590 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The identity (13122*n^2 + 324*n + 1)^2 - (81*n^2 + 2*n)*(1458*n + 18)^2 = 1 can be written as A157506(n)^2 - A177099(n)*a(n)^2 = 1 (see Bruno Berselli's comment at A177099). - Vincenzo Librandi, Feb 04 2012 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..10000 Vincenzo Librandi, X^2-AY^2=1 Index entries for linear recurrences with constant coefficients, signature (2,-1). FORMULA G.f.: x*(1476 - 18*x)/(1-x)^2. - Vincenzo Librandi, Feb 04 2012 a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 04 2012 MATHEMATICA LinearRecurrence[{2, -1}, {1476, 2934}, 50] (* Vincenzo Librandi, Feb 04 2012 *) 1458*Range[40]+18 (* Harvey P. Dale, Aug 17 2016 *) PROG (Magma) I:=[1476, 2934]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 04 2012 (PARI) for(n=1, 40, print1(1458n + 18", ")); \\ Vincenzo Librandi, Feb 04 2012 CROSSREFS Cf. A157506, A177099. Sequence in context: A237144 A187310 A167575 * A290723 A187531 A251218 Adjacent sequences: A157502 A157503 A157504 * A157506 A157507 A157508 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Mar 02 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 02:30 EDT 2024. Contains 372758 sequences. (Running on oeis4.)