

A157503


det(I  M) where M_jk = (j*x)^k/k!.


2



1, 1, 4, 21, 160, 1505, 17136, 226093, 3334528, 53031105, 864640000, 12957006821, 107329453056, 4548002439071, 409321789829120, 23780752998703875, 1257249577352658944, 65336038911885770623
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

The n X n matrix M is a Vandermonde matrix of (x, 2x, 3x, ..., j*x, ..., n*x) scaled by factorials. The first n coefficients of x in det(I  M) are always the same.


LINKS

Andrew J. Robbins, Table of n, a(n) for n = 0..50


FORMULA

E.g.f.: det(I  M) where M_jk = (j*x)^k/k!.


MATHEMATICA

A[n_] := D[Det[Table[KroneckerDelta[j, k]  (j*x)^k/k!, {j, 1, n}, {k, 1, n}]], {x, n}]/.x>0


CROSSREFS

Sequence in context: A357424 A166901 A060072 * A144010 A179496 A339233
Adjacent sequences: A157500 A157501 A157502 * A157504 A157505 A157506


KEYWORD

easy,sign


AUTHOR

Andrew J. Robbins, Mar 02 2009


STATUS

approved



