login
A157503
det(I - M) where M_jk = (j*x)^k/k!.
2
1, -1, -4, -21, -160, -1505, -17136, -226093, -3334528, -53031105, -864640000, -12957006821, -107329453056, 4548002439071, 409321789829120, 23780752998703875, 1257249577352658944, 65336038911885770623
OFFSET
0,3
COMMENTS
The n X n matrix M is a Vandermonde matrix of (x, 2x, 3x, ..., j*x, ..., n*x) scaled by factorials. The first n coefficients of x in det(I - M) are always the same.
LINKS
FORMULA
E.g.f.: det(I - M) where M_jk = (j*x)^k/k!.
MATHEMATICA
A[n_] := D[Det[Table[KroneckerDelta[j, k] - (j*x)^k/k!, {j, 1, n}, {k, 1, n}]], {x, n}]/.x->0
CROSSREFS
Sequence in context: A357424 A166901 A060072 * A144010 A366184 A179496
KEYWORD
easy,sign
AUTHOR
Andrew J. Robbins, Mar 02 2009
STATUS
approved