login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060072
a(n) = (n^(n-1) - 1)/(n-1) for n>1, a(1) = 0.
16
0, 1, 4, 21, 156, 1555, 19608, 299593, 5380840, 111111111, 2593742460, 67546215517, 1941507093540, 61054982558011, 2085209001813616, 76861433640456465, 3041324492229179280, 128583032925805678351, 5784852794328402307380, 275941052631578947368421
OFFSET
1,3
COMMENTS
(n-1)-digit repunits in base n written in decimal.
LINKS
FORMULA
a(n+1) = Sum_{k=1..n} n^(k-1)*C(n, k). - Olivier Gérard, Jun 26 2001 [Corrected by Mathew Englander, Dec 15 2020]
a(n) = Sum_{j=2..n} n^(n-j). - Zerinvary Lajos, Sep 11 2006
a(n+1) = A125118(n,n). - Reinhard Zumkeller, Nov 21 2006
a(n) = Integral_{x=1/n..1} 1/x^n dx. - Francesco Daddi, Aug 01 2011
a(n) = A037205(n-1)/(n-1) = A060073(n)*(n-1) = A023037(n) - A000169(n).
a(n) = [x^n] x^2/((1 - x)*(1 - n*x)). - Ilya Gutkovskiy, Oct 04 2017
a(n) = 1 + A228275(n, n-2) for n >= 2. - Mathew Englander, Dec 14 2020
EXAMPLE
a(10)=111111111; i.e., just nine 1's (converted from base 10 to decimal).
MATHEMATICA
Join[{0}, Array[(#^(#-1)-1)/(#-1)&, 20, 2]] (* Harvey P. Dale, Jun 04 2013 *)
PROG
(PARI) a(n) = if (n==1, 0, (n^(n - 1) - 1)/(n - 1)); \\ Harry J. Smith, Jul 01 2009
(Magma) [0] cat [ (n^(n-1) -1)/(n-1) : n in [2..25]]; // G. C. Greubel, Aug 15 2022
(SageMath) [0]+[(n^(n-1) -1)/(n-1) for n in (2..25)] # G. C. Greubel, Aug 15 2022
CROSSREFS
Cf. other sequences of generalized repunits, such as A053696, A055129, A031973, A125598, A173468, A023037, A119598, A085104, and A162861.
Sequence in context: A316370 A357424 A166901 * A157503 A144010 A366184
KEYWORD
nonn
AUTHOR
Henry Bottomley, Feb 21 2001
EXTENSIONS
Name edited by Michel Marcus, Dec 14 2020
STATUS
approved