The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A125598 a(n) = ((n+1)^(n-1)-1)/n. 2
 0, 1, 5, 31, 259, 2801, 37449, 597871, 11111111, 235794769, 5628851293, 149346699503, 4361070182715, 139013933454241, 4803839602528529, 178901440719363487, 7143501829211426575, 304465936543600121441 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Odd prime p divides a(p-2). a(n) is prime for n = {3,4,6,74,...}; prime terms are {5, 31, 2801, ...}. a(n) is the (n-1)-th generalized repunit in base (n+1). For example, a(5) = 259 which is 1111 in base 6. - Mathew Englander, Oct 20 2020 LINKS FORMULA a(n) = ((n+1)^(n-1)-1)/n. a(n) = (A000272(n+1)-1)/n. a(2k-1)/(2k+1) = A125599(k) for k>0. From Mathew Englander, Dec 17 2020: (Start) a(n) = (A060072(n+1) - A083069(n-1))/2. For n > 1, a(n) = Sum_{k=0..n-2} (n+1)^k. For n > 1, a(n) = Sum_{j=0..n-2} n^j*C(n-1,j+1). (End) MAPLE a:=n->sum((n+3)^j, j=0..n): seq(a(n), n=-1..17); # Zerinvary Lajos, Dec 17 2008 MATHEMATICA Table[((n+1)^(n-1)-1)/n, {n, 1, 25}] PROG (Sage) [gaussian_binomial(n, 1, n+2) for n in range(0, 18)] # Zerinvary Lajos, May 31 2009 CROSSREFS Cf. A000272 (n^(n-2)), A125599. Cf. other sequences of generalized repunits, such as A125118, A053696, A055129, A060072, A031973, A173468, A023037, A119598, A085104, and A162861. Sequence in context: A279434 A000556 A320512 * A267436 A294215 A294216 Adjacent sequences:  A125595 A125596 A125597 * A125599 A125600 A125601 KEYWORD nonn AUTHOR Alexander Adamchuk, Nov 26 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 23 05:47 EST 2021. Contains 340384 sequences. (Running on oeis4.)