login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A037205
a(n) = (n+1)^n - 1.
12
0, 1, 8, 63, 624, 7775, 117648, 2097151, 43046720, 999999999, 25937424600, 743008370687, 23298085122480, 793714773254143, 29192926025390624, 1152921504606846975, 48661191875666868480, 2185911559738696531967, 104127350297911241532840, 5242879999999999999999999, 278218429446951548637196400, 15519448971100888972574851071
OFFSET
0,3
COMMENTS
For n >= 1, a(n) = order of Fibonacci group F(n+1,n).
The terms, written in base n+1, are n digits of value n. For example, a(4) = 624 = 4444 in base 5. - Marc Morgenegg, Nov 30 2016
For n >= 1, in a square grid of side n, this is the number of ways to populate the grid with 1 X 1 blocks (with at least one block) so that no block falls under the effect of gravity. - Paolo Xausa, Apr 12 2021
For n > 1, (n-1)^2 | a(n). - David A. Corneth, Dec 15 2022
REFERENCES
D. L. Johnson, Presentation of Groups, Cambridge, 1976, p. 182.
Richard M. Thomas, The Fibonacci groups revisited, in Groups - St. Andrews 1989, Vol. 2, 445-454, London Math. Soc. Lecture Note Ser., 160, Cambridge Univ. Press, Cambridge, 1991.
LINKS
Michael Penn, A divisibility problem., YouTube video, 2021.
FORMULA
a(n) = A000169(n+1) - 1 = A060072(n+1)*(n-1) = A060073(n+1)*(n-1)^2.
E.g.f.: 1/(exp(LambertW(-x)) - x) - exp(x). - Ilya Gutkovskiy, Nov 30 2016
E.g.f.: -exp(x) - 1/(x + x/LambertW(-x)). - Vaclav Kotesovec, Dec 05 2016
a(n) = Sum_{k=1..n} binomial(n,k)*n^k [from Paolo Xausa's comment]. - Joerg Arndt, Apr 12 2021
MATHEMATICA
Table[(n + 1)^n - 1, {n, 0, 21}] (* or *)
Table[If[n < 1, Length@ #, FromDigits[#, n + 1]] &@ ConstantArray[n, n], {n, 0, 21}] (* Michael De Vlieger, Nov 30 2016 *)
PROG
(PARI) for(n=0, 25, print1((n + 1)^n - 1, ", ")) \\ G. C. Greubel, Nov 10 2017
(Magma) [(n + 1)^n - 1: n in [0..25]]; // G. C. Greubel, Nov 10 2017
CROSSREFS
A diagonal of A202624.
Sequence in context: A369810 A105219 A060071 * A302399 A356337 A084096
KEYWORD
nonn,easy
EXTENSIONS
Revised by N. J. A. Sloane, Dec 30 2011
STATUS
approved