This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A290723 a(n) = (1/11520) * n*(n+7)^2 * (3*n^7 + 83*n^6 + 961*n^5 + 6201*n^4 + 24708*n^3 + 60700*n^2 + 87968*n + 85056). 2
 0, 1476, 11772, 61595, 249986, 846306, 2495961, 6601035, 15978570, 35938992, 75976077, 152318826, 291665618, 536502980, 952506198, 1638627738, 2740602996, 4468742196, 7121033250, 11112754029, 17013984714, 25596622646, 37892734319, 55266332805, 79500944910 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1). FORMULA G.f.: x*(1476 - 4464*x + 13283*x^2 - 23639*x^3 + 28885*x^4 - 24502*x^5 + 14202*x^6 - 5376*x^7 + 1200*x^8 - 120*x^9) / (1 - x)^11. - Colin Barker, Aug 09 2017 MATHEMATICA CoefficientList[Series[x (1476 - 4464 x + 13283 x^2 - 23639 x^3 + 28885 x^4 - 24502 x^5 + 14202 x^6 - 5376 x^7 + 1200 x^8 - 120 x^9)/(1 - x)^11, {x, 0, 24}], x] (* Michael De Vlieger, Aug 09 2017 *) PROG (PARI) concat(0, Vec(x*(1476 - 4464*x + 13283*x^2 - 23639*x^3 + 28885*x^4 - 24502*x^5 + 14202*x^6 - 5376*x^7 + 1200*x^8 - 120*x^9) / (1 - x)^11 + O(x^30))) \\ Colin Barker, Aug 09 2017 CROSSREFS This is the negation of column 6 of triangle A290053. Sequence in context: A187310 A167575 A157505 * A187531 A251218 A188363 Adjacent sequences:  A290720 A290721 A290722 * A290724 A290725 A290726 KEYWORD nonn,easy AUTHOR Gregory Gerard Wojnar, Aug 09 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 20:24 EDT 2019. Contains 328273 sequences. (Running on oeis4.)