login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290724
Triangle read by rows: T(n,k) = number of arrangements of k non-attacking rooks on an n X n right triangular board with every square controlled by at least one rook.
2
1, 1, 1, 0, 4, 1, 0, 2, 11, 1, 0, 0, 18, 26, 1, 0, 0, 6, 100, 57, 1, 0, 0, 0, 96, 444, 120, 1, 0, 0, 0, 24, 900, 1734, 247, 1, 0, 0, 0, 0, 600, 6480, 6246, 502, 1, 0, 0, 0, 0, 120, 8520, 39762, 21320, 1013, 1, 0, 0, 0, 0, 0, 4320, 90600, 219312, 70128, 2036, 1
OFFSET
1,5
COMMENTS
See A146304 for algorithm and PARI code to produce this sequence.
Equivalently, the number of maximal independent vertex sets in the n-triangular honeycomb bishop graph with k vertices. A bishop can move along two axes in the triangular honeycomb grid.
LINKS
Eric Weisstein's World of Mathematics, Maximal Independent Vertex Set
EXAMPLE
Triangle begins:
1;
1, 1;
0, 4, 1;
0, 2, 11, 1;
0, 0, 18, 26, 1;
0, 0, 6, 100, 57, 1;
0, 0, 0, 96, 444, 120, 1;
0, 0, 0, 24, 900, 1734, 247, 1;
0, 0, 0, 0, 600, 6480, 6246, 502, 1;
0, 0, 0, 0, 120, 8520, 39762, 21320, 1013, 1;
...
MATHEMATICA
CoefficientList[Table[Sum[k! StirlingS2[m, k] StirlingS2[n + 1 - m, k + 1] x^(n - k), {m, 0, n}, {k, 0, Min[m, n - m]}], {n, 20}]/x, x] // Flatten (* Eric W. Weisstein, Feb 01 2024 *)
CROSSREFS
Row sums are A290615.
Sequence in context: A206799 A084119 A166073 * A283879 A216178 A122899
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Aug 09 2017
STATUS
approved