login
A259697
Triangle read by rows: T(n,k) = number of rook patterns on n X n board where bottom rook is in column k.
3
1, 1, 1, 1, 2, 2, 1, 4, 5, 5, 1, 9, 12, 15, 15, 1, 24, 32, 42, 52, 52, 1, 76, 99, 129, 166, 203, 203, 1, 279, 354, 451, 575, 726, 877, 877, 1, 1156, 1434, 1786, 2232, 2792, 3466, 4140, 4140, 1, 5296, 6451, 7883, 9664, 11881, 14621, 17884, 21147, 21147
OFFSET
0,5
COMMENTS
See Becker (1948/49) for precise definition.
This is the number of arrangements of non-attacking rooks on an n X n right triangular board where the bottom rook is in column k. The case of k=0 corresponds to the empty board where there is no bottom rook. - Andrew Howroyd, Jun 13 2017
LINKS
H. W. Becker, Rooks and rhymes, Math. Mag. 22 (1948/49), 23-26. See Table V.
H. W. Becker, Rooks and rhymes, Math. Mag., 22 (1948/49), 23-26. [Annotated scanned copy]
FORMULA
T(n,0) = 1, T(n,k) = Sum_{i=k..n} A011971(i-1,k-1) for k>0. - Andrew Howroyd, Jun 13 2017
EXAMPLE
Triangle begins:
1,
1, 1,
1, 2, 2,
1, 4, 5, 5,
1, 9, 12, 15, 15,
1, 24, 32, 42, 52, 52,
1, 76, 99, 129, 166, 203, 203,
...
From Andrew Howroyd, Jun 13 2017: (Start)
For n=3, the four solutions with the bottom rook in column 1 are:
. . . x
. . . x x . . .
x . . x . . . . . . . .
For n=3, the five solutions with the bottom rook in column 2 are:
. . x . x
. . x . . . . x . x
. x . . x . . x . . . . . . .
(End)
MATHEMATICA
a11971[n_, k_] := Sum[Binomial[k, i]*BellB[n - k + i], {i, 0, k}];
T[_, 0] = 1; T[n_, k_] := Sum[a11971[i - 1, k - 1], {i, k, n}];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 07 2018, after Andrew Howroyd *)
PROG
(PARI)
A(N)={my(T=matrix(N, N), U=matrix(N, N)); T[1, 1]=1; U[1, 1]=1;
for(n=2, N, for(k=1, n, T[n, k]=if(k==1, T[n-1, n-1], T[n-1, k-1]+T[n, k-1]); U[n, k]=T[n, k]+U[n-1, k])); U}
{my(T=A(10)); for(n=0, length(T), for(k=0, n, print1(if(k==0, 1, T[n, k]), ", ")); print)} \\ Andrew Howroyd, Jun 13 2017
(Python)
from sympy import bell, binomial
def a011971(n, k): return sum([binomial(k, i)*bell(n - k + i) for i in range(k + 1)])
def T(n, k): return 1 if k==0 else sum([a011971(i - 1, k - 1) for i in range(k, n + 1)])
for n in range(10): print [T(n, k) for k in range(n + 1)] # Indranil Ghosh, Jun 17 2017
CROSSREFS
Right edge is A000110.
Column k=1 is A005001.
Row sums are A000110(n+1).
Sequence in context: A247311 A113547 A218580 * A330664 A330843 A115313
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jul 05 2015
EXTENSIONS
Terms a(28) and beyond from Andrew Howroyd, Jun 13 2017
STATUS
approved