login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216178
Period 4: repeat [4, 1, 0, -3].
1
4, 1, 0, -3, 4, 1, 0, -3, 4, 1, 0, -3, 4, 1, 0, -3, 4, 1, 0, -3, 4, 1, 0, -3, 4, 1, 0, -3, 4, 1, 0, -3, 4, 1, 0, -3, 4, 1, 0, -3, 4, 1, 0, -3, 4, 1, 0, -3, 4, 1, 0, -3, 4, 1, 0, -3, 4, 1, 0, -3, 4, 1, 0, -3, 4, 1, 0, -3, 4, 1, 0, -3, 4, 1, 0, -3, 4, 1, 0, -3
OFFSET
0,1
FORMULA
a(n) = (3*(-1)^n+1)/2 + 2*(-1)^((2*n-1+(-1)^n)/4).
a(n) = A168361(n+1) + A084100(n+4).
G.f.: (4+x-3*x^3) / ((1-x)*(1+x)*(1+x^2)). - R. J. Mathar, Mar 10 2013
a(n+4) = a(n). - Alexander R. Povolotsky, Mar 15 2013
From Wesley Ivan Hurt, Jul 09 2016: (Start)
a(n) = 1/2+3*I^(2*n)/2+(1+I)*I^(-n)+(1-I)*I^n.
a(n) = (1+3*cos(n*Pi)+4*cos(n*Pi/2)+4*sin(n*Pi/2)+3*I*sin(n*Pi))/2. (End)
MAPLE
seq(op([4, 1, 0, -3]), n=0..40); # Wesley Ivan Hurt, Jul 09 2016
MATHEMATICA
PadRight[{}, 100, {4, 1, 0, -3}] (* or *) LinearRecurrence[{0, 0, 0, 1}, {4, 1, 0, -3}, 100] (* Harvey P. Dale, Nov 28 2014 *)
PROG
(Magma) for n in [0 .. 50] do (3*(-1)^n+1)/2 + 2*(-1)^((2*n-1+(-1)^n)/4); end for;
(Magma) &cat [[4, 1, 0, -3]^^30]; // Wesley Ivan Hurt, Jul 09 2016
(PARI) a(n)=[4, 1, 0, -3][n%4+1] \\ Charles R Greathouse IV, Jul 17 2016
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Brad Clardy, Mar 10 2013
STATUS
approved