login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168361
Period 2: repeat 2, -1.
6
2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1
OFFSET
1,1
COMMENTS
Interleaving of A007395 and -A000012.
Binomial transform of 2 followed by a signed version of A007283; also binomial transform of a signed version of A042950.
Second binomial transform of a signed version of A007051 without initial term 1.
Inverse binomial transform of 2 followed by A000079.
A028242 without first two terms gives partial sums.
FORMULA
a(n) = (1 - 3*(-1)^n)/2.
a(n) = -a(n-1) + 1 for n > 1; a(1) = 2.
a(n) = a(n-2) for n > 2; a(1) = 2, a(2) = -1.
a(n+1) - a(n) = 3*(-1)^n.
G.f.: x*(2 - x)/((1-x)*(1+x)).
E.g.f.: (1/2)*(-1 + exp(x))*(3 + exp(x))*exp(-x). - G. C. Greubel, Jul 19 2016
MATHEMATICA
PadRight[{}, 120, {2, -1}] (* Harvey P. Dale, Jan 04 2015 *)
Table[(1 - 3 (-1)^n)/2, {n, 120}] (* or *)
Rest@ CoefficientList[Series[x (2 - x)/((1 - x) (1 + x)), {x, 0, 120}], x] (* Michael De Vlieger, Jul 19 2016 *)
PROG
(Magma) &cat[ [2, -1]: n in [1..42] ];
[ n eq 1 select 2 else -Self(n-1)+1: n in [1..84] ];
(PARI) a(n)=2-n%2*3 \\ Charles R Greathouse IV, Jul 13 2016
(Magma) &cat[[2, -1]^^40]; // Vincenzo Librandi, Jul 20 2016
CROSSREFS
Cf. A168330 (repeat 3, -2), A007395 (all 2's sequence), A000012 (all 1's sequence), (A007283 3*2^n), A042950, A007051 ((3^n+1)/2), A000079 (powers of 2), A028242 (follow n+1 by n).
Sequence in context: A327767 A228826 A288699 * A107393 A000034 A040001
KEYWORD
sign,easy
AUTHOR
Klaus Brockhaus, Nov 23 2009
EXTENSIONS
G.f. adapted to the offset by Bruno Berselli, Apr 01 2011
STATUS
approved