OFFSET
1,1
COMMENTS
Binomial transform of 2 followed by a signed version of A007283; also binomial transform of a signed version of A042950.
Second binomial transform of a signed version of A007051 without initial term 1.
Inverse binomial transform of 2 followed by A000079.
A028242 without first two terms gives partial sums.
LINKS
FORMULA
a(n) = (1 - 3*(-1)^n)/2.
a(n) = -a(n-1) + 1 for n > 1; a(1) = 2.
a(n) = a(n-2) for n > 2; a(1) = 2, a(2) = -1.
a(n+1) - a(n) = 3*(-1)^n.
G.f.: x*(2 - x)/((1-x)*(1+x)).
E.g.f.: (1/2)*(-1 + exp(x))*(3 + exp(x))*exp(-x). - G. C. Greubel, Jul 19 2016
MATHEMATICA
PadRight[{}, 120, {2, -1}] (* Harvey P. Dale, Jan 04 2015 *)
Table[(1 - 3 (-1)^n)/2, {n, 120}] (* or *)
Rest@ CoefficientList[Series[x (2 - x)/((1 - x) (1 + x)), {x, 0, 120}], x] (* Michael De Vlieger, Jul 19 2016 *)
PROG
(Magma) &cat[ [2, -1]: n in [1..42] ];
[ n eq 1 select 2 else -Self(n-1)+1: n in [1..84] ];
(PARI) a(n)=2-n%2*3 \\ Charles R Greathouse IV, Jul 13 2016
(Magma) &cat[[2, -1]^^40]; // Vincenzo Librandi, Jul 20 2016
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Klaus Brockhaus, Nov 23 2009
EXTENSIONS
G.f. adapted to the offset by Bruno Berselli, Apr 01 2011
STATUS
approved