login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168330
Period 2: repeat [3, -2].
1
3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2
OFFSET
1,1
COMMENTS
Interleaving of A010701 and -A007395.
Binomial transform of 3 followed by a signed version of A020714.
Inverse binomial transform of 3 followed by A000079.
A084964 without first two terms gives partial sums.
FORMULA
a(n) = (-5*(-1)^n + 1)/2.
a(n+1) - a(n) = 5*(-1)^n.
a(n) = -a(n-1) + 1 for n > 1; a(1) = 3.
a(n) = a(n-2) for n > 2; a(1) = 3, a(2) = -2.
G.f.: x*(3 - 2*x)/((1-x)*(1+x)).
a(n) = A049071(n). - R. J. Mathar, Nov 25 2009
E.g.f.: (1/2)*(1 - exp(-x))*(5 + exp(x)). - G. C. Greubel, Jul 18 2016
MATHEMATICA
LinearRecurrence[{0, 1}, {3, -2}, 25] (* G. C. Greubel, Jul 18 2016 *)
PadRight[{}, 120, {3, -2}] (* Harvey P. Dale, Oct 05 2016 *)
PROG
(Magma) &cat[[3, -2]: n in [1..42]];
(Magma) [n eq 1 select 3 else -Self(n-1)+1:n in [1..84]];
(Magma) [(-5*(-1)^n+1)/2: n in [1..100]]; // Vincenzo Librandi, Jul 19 2016
(PARI) a(n)=3-n%2*5 \\ Charles R Greathouse IV, Jul 13 2016
CROSSREFS
Cf. A168309 (repeat 4, -3), A010701 (all 3's sequence), A007395 (all 2's sequence), A010716 (all 5's sequence), A020714 (5*2^n), A000079 (powers of 2), A084964 (follow n+2 by n).
Sequence in context: A344129 A308006 A049071 * A176059 A262785 A264843
KEYWORD
sign,easy
AUTHOR
Klaus Brockhaus, Nov 23 2009
STATUS
approved