This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A176059 Periodic sequence: Repeat 3, 2. 19
 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Interleaving of A010701 and A007395. Also continued fraction expansion of (3+sqrt(15))/2. Also decimal expansion of 32/99. a(n) = A010693(n+1). Essentially first differences of A047218. Binomial transform of 3 followed by -A122803. Inverse binomial transform of 3 followed by A020714. Second inverse binomial transform of A057198 without initial term 1. LINKS FORMULA a(n) = (5+(-1)^n)/2. a(n) = a(n-2) for n > 1; a(0) = 3, a(1) = 2. a(n) = -a(n-1)+5 for n > 0; a(0) = 3. a(n) = 3*((n+1) mod 2)+2*(n mod 2). G.f.: (3+2*x)/((1-x)*(1+x)). MAPLE A176059:=n->(5+(-1)^n)/2; seq(A176059(n), n=0..100); # Wesley Ivan Hurt, Feb 26 2014 MATHEMATICA a[n_] := {3, 2}[[Mod[n, 2] + 1]]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Jul 19 2013 *) PROG (MAGMA) &cat[ [3, 2]: n in [0..52] ]; [ (5+(-1)^n)/2: n in [0..104] ]; (Haskell) a176059 = (3 -) . (`mod` 2) -- Reinhard Zumkeller, Nov 27 2012 (Haskell) a176059_list = cycle [3, 2]  -- Reinhard Zumkeller, Apr 04 2012 (PARI) a(n)=3-n%2 \\ Charles R Greathouse IV, Jul 13 2016 CROSSREFS Cf. A010701 (all 3's sequence), A007395 (all 2's sequence), A176058 (decimal expansion of (3+sqrt(15))/2), A010693 (repeat 2, 3), A047218 (congruent to {0, 3} mod 5), A122803 (powers of -2), A020714 (5*2^n), A057198 ((5*3^(n-1)+1)/2, n > 0). Cf. A026532 (partial products). Sequence in context: A308006 A049071 A168330 * A262785 A264843 A316290 Adjacent sequences:  A176056 A176057 A176058 * A176060 A176061 A176062 KEYWORD cofr,cons,nonn,easy AUTHOR Klaus Brockhaus, Apr 07 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 15 12:22 EDT 2019. Contains 327078 sequences. (Running on oeis4.)