login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Period 2: repeat [3, -2].
1

%I #20 Sep 08 2022 08:45:49

%S 3,-2,3,-2,3,-2,3,-2,3,-2,3,-2,3,-2,3,-2,3,-2,3,-2,3,-2,3,-2,3,-2,3,

%T -2,3,-2,3,-2,3,-2,3,-2,3,-2,3,-2,3,-2,3,-2,3,-2,3,-2,3,-2,3,-2,3,-2,

%U 3,-2,3,-2,3,-2,3,-2,3,-2,3,-2,3,-2,3,-2,3,-2,3,-2,3,-2,3,-2,3,-2,3,-2,3,-2

%N Period 2: repeat [3, -2].

%C Interleaving of A010701 and -A007395.

%C Binomial transform of 3 followed by a signed version of A020714.

%C Inverse binomial transform of 3 followed by A000079.

%C A084964 without first two terms gives partial sums.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,1).

%F a(n) = (-5*(-1)^n + 1)/2.

%F a(n+1) - a(n) = 5*(-1)^n.

%F a(n) = -a(n-1) + 1 for n > 1; a(1) = 3.

%F a(n) = a(n-2) for n > 2; a(1) = 3, a(2) = -2.

%F G.f.: x*(3 - 2*x)/((1-x)*(1+x)).

%F a(n) = A049071(n). - _R. J. Mathar_, Nov 25 2009

%F E.g.f.: (1/2)*(1 - exp(-x))*(5 + exp(x)). - _G. C. Greubel_, Jul 18 2016

%t LinearRecurrence[{0, 1}, {3, -2}, 25] (* _G. C. Greubel_, Jul 18 2016 *)

%t PadRight[{},120,{3,-2}] (* _Harvey P. Dale_, Oct 05 2016 *)

%o (Magma) &cat[[3,-2]: n in [1..42]];

%o (Magma) [n eq 1 select 3 else -Self(n-1)+1:n in [1..84]];

%o (Magma) [(-5*(-1)^n+1)/2: n in [1..100]]; // _Vincenzo Librandi_, Jul 19 2016

%o (PARI) a(n)=3-n%2*5 \\ _Charles R Greathouse IV_, Jul 13 2016

%Y Cf. A168309 (repeat 4, -3), A010701 (all 3's sequence), A007395 (all 2's sequence), A010716 (all 5's sequence), A020714 (5*2^n), A000079 (powers of 2), A084964 (follow n+2 by n).

%K sign,easy

%O 1,1

%A _Klaus Brockhaus_, Nov 23 2009