The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A137985 Complementing any single bit in the binary representation of these primes produces a composite number. 8
 127, 173, 191, 223, 233, 239, 251, 257, 277, 337, 349, 373, 431, 443, 491, 509, 557, 653, 683, 701, 733, 761, 787, 853, 877, 1019, 1193, 1201, 1259, 1381, 1451, 1453, 1553, 1597, 1709, 1753, 1759, 1777, 1973, 2027, 2063, 2333, 2371, 2447, 2633, 2879, 2917 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS If 2^m is the highest power of 2 in the binary representation of the prime p, there is no requirement that p+2^(m+1) be composite. Sequence A065092 imposes this extra requirement. The prime 223 is the first number in this sequence that is not in A065092. Mentioned Feb 25 2008 by Terence Tao in his blog http://terrytao.wordpress.com. Tao proves that there are an infinite number of these primes in every fixed base. Digitally delicate primes in base 2. - Marc Morgenegg, Apr 21 2021 REFERENCES Cohen, Fred; Selfridge, J. L., Not every number is the sum or difference of two prime powers. Collection of articles dedicated to Derrick Henry Lehmer on the occasion of his seventieth birthday. Math. Comp. 29 (1975), 79-81. MR0376583 (51 #12758). LINKS T. D. Noe, Table of n, a(n) for n = 1..10000 Warren D. Smith et al., Primes such that every bit matters?, Yahoo group "primenumbers", April 2013. Warren D. Smith and others, Primes such that every bit matters?, digest of 14 messages in primenumbers Yahoo group, Apr 3 - Apr 9, 2013. [Cached copy] Terence Tao, A remark on primality testing and decimal expansions, arXiv:0802.3361 [math.NT], 2008-2010; Journal of the Australian Mathematical Society 91:3 (2011), pp. 405-413. EXAMPLE The numbers produced by complementing each of the 8 bits of 223 are 95, 159, 255, 207, 215, 219, 221 and 222, which are all composite. MAPLE P:=proc(n) local a, b, c, d, j, k, ok; a:=ithprime(n); b:=convert(a, base, 2); ok:=1; for k from 1 to nops(b) do c:=b; c[k]:=(c[k]+1) mod 2; d:=0; for j from 1 to nops(c) do d:=2*d+c[-j]; od; if isprime(d) then ok:=0; break; fi; od; if ok=1 then a; fi; end: seq(P(i), i=1..420); # Paolo P. Lava, Dec 24 2018 MATHEMATICA t={}; k=1; While[Length[t]<100, k++; p=Prime[k]; d=IntegerDigits[p, 2]; n=Length[d]; i=0; While[i z; Select[Prime /@ Range[3, PrimePi[10^6]], isWPbase2@# &] (* Terentyev Oleg, Jul 17 2011 *) PROG (PARI)f(p)={pow2=1; v=binary(p); L=#v; forstep(k=L, 1, -1, if(v[k], p-=pow2; if(isprime(p), return(0), p+=pow2), p+=pow2; if(isprime(p), return(0), p-=pow2)); pow2*=2); return(1)}; forprime(p=2, 2879, if(f(p), print1(p, ", "))) \\ Washington Bomfim, Jan 18 2011 (PARI) is_A137985(n)=!for(k=1, n, isprime(bitxor(n, k)) && return; k+=k-1) && isprime(n) \\ Note: A bug in early versions of PARI 2.6 (execute "for(i=0, 1, i>3 && error(buggy); i=9)" to check) makes that this is is_A065092 rather than is_A137985 as expected. For these versions, replace the upper limit n with n\2. \\ M. F. Hasler, Apr 05 2013 (Python) from sympy import isprime, primerange def ok(p): # p assumed prime   return not any(isprime((1<

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 22:46 EDT 2021. Contains 345016 sequences. (Running on oeis4.)