The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A177203 Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=10, k=-1 and l=1. 0
 1, 10, 19, 136, 649, 4375, 26893, 184438, 1249507, 8820901, 62634223, 453382597, 3309224059, 24424411627, 181601249779, 1360466777260, 10253089323433, 77706202937131, 591759519723973, 4526303458541383, 34756744887203401 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..20. FORMULA G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=-1, l=1). Conjecture: (n+1)*a(n) +(2-7n)*a(n-1) +3(17-7n)*a(n-2) +9(11n-34)*a(n-3) +108(4-n)*a(n-4) +36(n-5)*a(n-5)=0. - R. J. Mathar, Nov 27 2011 EXAMPLE a(2)=2*1*10-2+1=19. a(3)=2*1*19-2+100-1+1=136. MAPLE l:=1: : k := -1 : for m from 0 to 10 do d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od : taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30): od; CROSSREFS Cf. A177200. Sequence in context: A220005 A253213 A293929 * A177167 A299575 A073222 Adjacent sequences: A177200 A177201 A177202 * A177204 A177205 A177206 KEYWORD easy,nonn AUTHOR Richard Choulet, May 04 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 04:26 EDT 2024. Contains 373468 sequences. (Running on oeis4.)