login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177200
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=9, k=-1 and l=1.
1
1, 9, 17, 113, 529, 3377, 20113, 131761, 859921, 5818417, 39713681, 275857841, 1933976593, 13702864689, 97835776145, 703688999089, 5092141619473, 37053507667505, 270930428700049, 1989695908892593, 14669498823228945
OFFSET
0,2
FORMULA
G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=-1, l=1).
Conjecture: +(n+1)*a(n) +(-7*n+2)*a(n-1) +(-17*n+43)*a(n-2) +3*(29*n-90)*a(n-3) +96*(-n+4)*a(n-4) +32*(n-5)*a(n-5)=0. - R. J. Mathar, Mar 02 2016
EXAMPLE
a(2)=2*1*9-2+1=17. a(3)=2*1*17-2+81-1+1=113.
MAPLE
l:=1: : k := -1 : m:=9:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);
CROSSREFS
Cf. A177199.
Sequence in context: A121442 A357567 A049440 * A177166 A073221 A110462
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, May 04 2010
STATUS
approved