login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177166
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=9, k=0 and l=-1.
0
1, 9, 17, 114, 533, 3406, 20281, 132987, 868359, 5880694, 40168271, 279254657, 1959385953, 13894772276, 99289815837, 714761301180, 5176706895201, 37701431645548, 275906664244201, 2028001454003211, 14964925167434231
OFFSET
0,2
FORMULA
G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=0, l=-1).
Conjecture: (n+1)*a(n) +2(1-3n)*a(n-1) +(51-23n)*a(n-2) +4*(16n-49)*a(n-3) +36*(4-n)*a(n-4)=0. - R. J. Mathar, Nov 27 2011
EXAMPLE
a(2)=2*1*9-1=17. a(3)=2*1*17+81-1=114.
MAPLE
l:=-1: : k := 0 : m:=9:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);
CROSSREFS
Cf. A177165.
Sequence in context: A357567 A049440 A177200 * A073221 A110462 A132375
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, May 04 2010
STATUS
approved