The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A177168 Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=6, k=0 and l=-2. 1
 1, 6, 10, 54, 226, 1198, 6186, 34182, 190962, 1096286, 6377338, 37652278, 224654146, 1353562766, 8220739274, 50284009702, 309467901842, 1915015423678, 11907759661850, 74365628891286, 466240095217378, 2933473106737902 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..21. FORMULA G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=0, l=-2). Conjecture: (n+1)*a(n) +2*(-3*n+1)*a(n-1) +(-11*n+27)*a(n-2) +2*(22*n-69)*a(n-3) +28*(-n+4)*a(n-4)=0. - R. J. Mathar, Jun 14 2016 EXAMPLE a(2)=2*1*6-2=10. a(3)=2*1*10+36-2=54. MAPLE l:=-2: : k := 0 : m:=6:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od : taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30); CROSSREFS Cf. A176757. Sequence in context: A115917 A275004 A115741 * A136843 A219776 A136848 Adjacent sequences: A177165 A177166 A177167 * A177169 A177170 A177171 KEYWORD easy,nonn AUTHOR Richard Choulet, May 04 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 15:18 EDT 2024. Contains 372758 sequences. (Running on oeis4.)