login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177168
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=6, k=0 and l=-2.
1
1, 6, 10, 54, 226, 1198, 6186, 34182, 190962, 1096286, 6377338, 37652278, 224654146, 1353562766, 8220739274, 50284009702, 309467901842, 1915015423678, 11907759661850, 74365628891286, 466240095217378, 2933473106737902
OFFSET
0,2
FORMULA
G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=0, l=-2).
Conjecture: (n+1)*a(n) +2*(-3*n+1)*a(n-1) +(-11*n+27)*a(n-2) +2*(22*n-69)*a(n-3) +28*(-n+4)*a(n-4)=0. - R. J. Mathar, Jun 14 2016
EXAMPLE
a(2)=2*1*6-2=10. a(3)=2*1*10+36-2=54.
MAPLE
l:=-2: : k := 0 : m:=6:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);
CROSSREFS
Cf. A176757.
Sequence in context: A115917 A275004 A115741 * A136843 A219776 A136848
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, May 04 2010
STATUS
approved