Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Jun 14 2016 12:42:09
%S 1,6,10,54,226,1198,6186,34182,190962,1096286,6377338,37652278,
%T 224654146,1353562766,8220739274,50284009702,309467901842,
%U 1915015423678,11907759661850,74365628891286,466240095217378,2933473106737902
%N Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=6, k=0 and l=-2.
%F G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=0, l=-2).
%F Conjecture: (n+1)*a(n) +2*(-3*n+1)*a(n-1) +(-11*n+27)*a(n-2) +2*(22*n-69)*a(n-3) +28*(-n+4)*a(n-4)=0. - _R. J. Mathar_, Jun 14 2016
%e a(2)=2*1*6-2=10. a(3)=2*1*10+36-2=54.
%p l:=-2: : k := 0 : m:=6:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
%p taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);
%Y Cf. A176757.
%K easy,nonn
%O 0,2
%A _Richard Choulet_, May 04 2010