login
A321509
a(1) = 1 and for any n > 1, a(n) = A321485(a(n-1)).
1
1, 11, 21, 121, 1121, 21121, 121121, 2121, 221, 2211, 2221, 3211, 13211, 113211, 2113211, 12113211, 112113211, 2112113211, 221113211, 223113211, 2213113211, 22113113211, 2221131211, 3221131211, 13221131211, 113221131211, 2113221131211, 12113221131211
OFFSET
1,2
COMMENTS
This sequence is a variant of the Look and Say sequence A005150; here we use A321485 instead of A045918 to describe the previous term.
In contrast to A005150, this sequence is not monotonic.
The first digit 1 appear in a(1) = 1.
The first digit 2 appear in a(3) = 21.
The first digit 3 appear in a(12) = 3211.
The first digit 4 appear in a(288) = 2221134231131131211.
Will other digits also appear?
Is this sequence bounded?
LINKS
EXAMPLE
The first terms, alongside the corresponding blocks, are:
n a(n) Blocks
-- ---------- ------------------
1 1 (1)
2 11 (1|1)
3 21 (21)
4 121 (121)
5 1121 (1|1)(21)
6 21121 (21121)
7 121121 (121|121)
8 2121 (21|21)
9 221 (2|2)(1)
10 2211 (2|2)(1|1)
11 2221 (2|2|2)(1)
12 3211 (3211)
13 13211 (13211)
14 113211 (1|1)(3211)
15 2113211 (2113211)
16 12113211 (12113211)
17 112113211 (1|1)(2113211)
18 2112113211 (211|211)(3211)
19 221113211 (2|2)(1|1|1)(3211)
20 223113211 (2|2)(3113211)
PROG
(C++) See Links section.
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Nov 11 2018
STATUS
approved