The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A087451 G.f.: (2-x)/((1+2x)(1-3x)); e.g.f.: exp(3x)+exp(-2x); a(n)=3^n+(-2)^n. 6
 2, 1, 13, 19, 97, 211, 793, 2059, 6817, 19171, 60073, 175099, 535537, 1586131, 4799353, 14316139, 43112257, 129009091, 387682633, 1161737179, 3487832977, 10458256051, 31385253913, 94134790219, 282446313697, 847255055011 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Generalized Lucas-Jacobsthal numbers. Pisano period lengths: 1, 1, 1, 2, 4, 1, 6, 2, 3, 4, 5, 2, 12, 6, 4, 4, 16, 3, 18, 4,... - R. J. Mathar, Aug 10 2012 LINKS Drexel University, Generation X and Y G. Everest, Y. Puri and T. Ward, Integer sequences counting periodic points, arXiv:math/0204173 [math.NT], 2002. OEIS Wiki, Autosequence Index entries for linear recurrences with constant coefficients, signature (1,6) FORMULA a(0) = 2, a(1) = 1, a(n) = a(n-1)+6a(n-2). a(n) = 3^n + (-2)^n. [Gary Detlefs, Dec 20 2009] The sequence 1, 13, 19... is a(n+1) = 3*3^n-2*(-2)^n. exp( Sum_{n >= 1} a(n)*x^n/n ) = Sum_{n >= 0} A015441(n+1)*x^n. - Peter Bala, Mar 30 2015 a(n) = 2*A015441(n+1) - A015441(n), a formula given by Paul Curtz for autosequences of the 2nd kind. - Jean-François Alcover, Jun 02 2017 MAPLE for i from 0 to 20 do print(3^i+(-2)^i) od; # Gary Detlefs, Dec 20 2009 MATHEMATICA a[0] = 2; a[1] = 1; a[n_] := a[n] = a[n - 1] + 6a[n - 2]; a /@ Range[0, 25] (* Robert G. Wilson v, Feb 02 2006 *) PROG (Sage) [lucas_number2(n, 1, -6) for n in range(0, 26)] # Zerinvary Lajos, Apr 30 2009 CROSSREFS Cf. A014551, A087452, A015441. Sequence in context: A113097 A032001 A118679 * A063558 A174170 A264373 Adjacent sequences:  A087448 A087449 A087450 * A087452 A087453 A087454 KEYWORD easy,nonn AUTHOR Paul Barry, Sep 06 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 11:17 EDT 2021. Contains 344990 sequences. (Running on oeis4.)