The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A015438 Gaussian binomial coefficient [ n,12 ] for q=-13. 12
 1, 21633936185161, 507029461102251552321630151, 11807441196984503845077844573952807835871, 275100402115798836253928241395289617394098490488956444, 6409295323626866454933457428954320223001885025904687118646704057084 (list; graph; refs; listen; history; text; internal format)
 OFFSET 12,2 REFERENCES J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. LINKS Vincenzo Librandi, Table of n, a(n) for n = 12..80 Index entries related to Gaussian binomial coefficients. FORMULA a(n)=product_{i=1..12} ((-13)^(n-i+1)-1)/((-13)^i-1). - M. F. Hasler, Nov 03 2012 MATHEMATICA Table[QBinomial[n, 12, -13], {n, 12, 20}] (* Vincenzo Librandi, Nov 06 2012 *) PROG (Sage) [gaussian_binomial(n, 12, -13) for n in range(12, 17)] # Zerinvary Lajos, May 28 2009 (PARI) A015438(n, r=12, q=-13)=prod(i=1, r, (q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012 (Magma) r:=12; q:=-13; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 06 2012 CROSSREFS Cf. Gaussian binomial coefficients [n,r] for q=-13: A015265 (r=2), A015286 (r=3), A015303 (r=4), A015321 (r=5), A015337 (r=6), A015355 (r=7), A015370 (r=8), A015385 (r=9), A015402 (r=10), A015422 (r=11). - M. F. Hasler, Nov 03 2012 Sequence in context: A172543 A298820 A246110 * A082249 A125735 A317777 Adjacent sequences: A015435 A015436 A015437 * A015439 A015440 A015441 KEYWORD nonn,easy AUTHOR Olivier Gérard STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 15 11:27 EDT 2024. Contains 371681 sequences. (Running on oeis4.)