login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A015337
Gaussian binomial coefficient [ n,6 ] for q = -13.
12
1, 4482037, 21762709934980, 104996653267533662740, 506816536013640476467362442, 2446300028783605805772822454177234, 11807825441932996339362317150047214843540
OFFSET
6,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
FORMULA
a(n) = Product_{i=1..6} ((-13)^(n-i+1)-1)/((-13)^i-1). - M. F. Hasler, Nov 03 2012
MATHEMATICA
Table[QBinomial[n, 6, -13], {n, 6, 10}] (* Vincenzo Librandi, Oct 29 2012 *)
PROG
(Sage) [gaussian_binomial(n, 6, -13) for n in range(6, 13)] # Zerinvary Lajos, May 27 2009
(PARI) A015337(n, r=6, q=-13)=prod(i=1, r, (q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
CROSSREFS
Cf. Gaussian binomial coefficients [n,r] for q=-13: A015265 (r=2), A015286 (r=3), A015303 (r=4), A015321 (r=5), A015355 (r=7), A015370 (r=8), A015385 (r=9), A015402 (r=10), A015422 (r=11), A015438 (r=12). - M. F. Hasler, Nov 03 2012
Sequence in context: A244575 A105649 A350187 * A339536 A319064 A344831
KEYWORD
nonn,easy
AUTHOR
Olivier Gérard, Dec 11 1999
STATUS
approved