|
|
A015338
|
|
Gaussian binomial coefficient [ n,7 ] for q = -2.
|
|
3
|
|
|
1, -85, 14535, -1652145, 225683007, -28005209505, 3642010817055, -462535373765985, 59438516325245343, -7593183562134412385, 972884994173649887135, -124468028808034701006945
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
7,2
|
|
REFERENCES
|
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 7..450[Terms 7 through 200 were computed by Vincenzo Librandi; terms 201 to 450 by G. C. Greubel, Nov 06 2016]
|
|
MATHEMATICA
|
Table[QBinomial[n, 7, -2], {n, 7, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
|
|
PROG
|
(Sage) [gaussian_binomial(n, 7, -2) for n in range(7, 19)] # Zerinvary Lajos, May 27 2009
(MAGMA) /* By definition: */ r:=7; q:=-2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Bruno Berselli, Oct 30 2012
|
|
CROSSREFS
|
Diagonal k=7 of the triangular array A015109. See there for further references and programs. - M. F. Hasler, Nov 04 2012
Sequence in context: A093285 A011813 A006106 * A181015 A131750 A239269
Adjacent sequences: A015335 A015336 A015337 * A015339 A015340 A015341
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
Olivier Gérard, Dec 11 1999
|
|
STATUS
|
approved
|
|
|
|