|
|
A015303
|
|
Gaussian binomial coefficient [ n,4 ] for q = -13.
|
|
12
|
|
|
|
OFFSET
|
4,2
|
|
REFERENCES
|
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = product_{i=1..4} ((-13)^(n-i+1)-1)/((-13)^i-1). - M. F. Hasler, Nov 03 2012
G.f.: -x^4 / ( (x-1)*(169*x-1)*(2197*x+1)*(13*x+1)*(28561*x-1) ). - R. J. Mathar, Aug 03 2016
|
|
EXAMPLE
|
To illustrate the relation qC(n,r)=qC(n,n-r), here with r=4, n=r+1...r+3:
|
|
MATHEMATICA
|
|
|
PROG
|
(Sage) [gaussian_binomial(n, 4, -13) for n in range(4, 12)] # Zerinvary Lajos, May 27 2009
|
|
CROSSREFS
|
Cf. q-integers and Gaussian binomial coefficients [n,r] for q=-13: A015000, A015265 (r=2), A015286 (r=3), A015321 (r=5), A015337 (r=6), A015355 (r=7), A015370 (r=8), A015385 (r=9), A015402 (r=10), A015422 (r=11), A015438 (r=12). - M. F. Hasler, Nov 03 2012
Fifth row (r=4) or column (resp. diagonal) of A015129, read as square (resp. triangular) array.
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|