login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166894
G.f.: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^n * x^k] * x^n/n ), an integer series in x.
5
1, 1, 2, 4, 14, 89, 1050, 28983, 2066217, 272159513, 56735786726, 23441305184736, 26635730598676118, 64099902414443754551, 241666593661232949435382, 1531373212165249576810266758, 24642808245610936988728333582900
OFFSET
0,3
FORMULA
G.f.: exp( Sum_{n>=1} A166895(n)*x^n/n ) where A166895(n) = Sum_{k=0..[n/2]} C(n-k,k)^(n-k)*n/(n-k).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 14*x^4 + 89*x^5 + 1050*x^6 +...
log(A(x)) = x + 3*x^2/2 + 7*x^3/3 + 39*x^4/4 + 366*x^5/5 + 5697*x^6/6 +...+ A166895(n)*x^n/n +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^m*x^k)*x^m/m)+x*O(x^n)), n)}
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m\2, binomial(m-k, k)^(m-k)*m/(m-k))*x^m/m)+x*O(x^n)), n)}
CROSSREFS
Cf. A166895.
Sequence in context: A371674 A181080 A375630 * A232108 A339651 A032052
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 23 2009
STATUS
approved