The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A166897 a(n) = Sum_{k=0..[n/2]} C(n-k,k)^3*n/(n-k), n>=1. 5
 1, 3, 13, 39, 126, 477, 1765, 6495, 24709, 95128, 367368, 1431453, 5620343, 22170543, 87858813, 349708431, 1397003136, 5598513261, 22502171771, 90681323364, 366299212873, 1482827487650, 6014529069540, 24439715146941 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Table of n, a(n) for n=1..24. FORMULA Logarithmic derivative of A166896. a(n) ~ sqrt(15) * phi^(3*n + 2) / (6*Pi*n), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Nov 27 2017 EXAMPLE L.g.f.: L(x) = x + 3*x^2/2 + 13*x^3/3 + 39*x^4/4 + 126*x^5/5 + 477*x^6/6 +... exp(L(x)) = 1 + x + 2*x^2 + 6*x^3 + 16*x^4 + 45*x^5 + 142*x^6 + 459*x^7 +...+ A166896(n)*x^n/n +... MATHEMATICA Table[Sum[Binomial[n-k, k]^3 n/(n-k), {k, 0, Floor[n/2]}], {n, 30}] (* Harvey P. Dale, Mar 05 2013 *) PROG (PARI) a(n)=sum(k=0, n\2, binomial(n-k, k)^3*n/(n-k)) CROSSREFS Cf. A166897, variants: A167539, A166895, A166899. Sequence in context: A320661 A122504 A103277 * A167910 A147042 A018492 Adjacent sequences: A166894 A166895 A166896 * A166898 A166899 A166900 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 23 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 22:48 EDT 2024. Contains 373466 sequences. (Running on oeis4.)