OFFSET
1,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..501 [Offset shifted by Georg Fischer, Nov 20 2024]
FORMULA
Logarithmic derivative of A166898.
a(n) ~ 5^(3/4) * phi^(4*n+3) / (2^(5/2) * Pi^(3/2) * n^(3/2)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Nov 27 2017
EXAMPLE
L.g.f.: L(x) = x + 3*x^2/2 + 25*x^3/3 + 111*x^4/4 + 456*x^5/5 + 2697*x^6/6 +...
exp(L(x)) = 1 + x + 2*x^2 + 10*x^3 + 38*x^4 + 137*x^5 + 646*x^6 + 3241*x^7 +...+ A166898(n)*x^n +...
MATHEMATICA
Table[Sum[Binomial[n - k, k]^4 *n/(n - k), {k, 0, Floor[n/2]}], {n, 1, 50}] (* G. C. Greubel, May 27 2016 *)
PROG
(PARI) a(n)=sum(k=0, n\2, binomial(n-k, k)^4*n/(n-k))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 23 2009
EXTENSIONS
Offset changed to 1 by Georg Fischer, Nov 20 2024
STATUS
approved