login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166899
a(n) = Sum_{k=0..[n/2]} C(n-k,k)^4*n/(n-k), n>=1.
4
1, 3, 25, 111, 456, 2697, 15961, 86247, 495781, 3003738, 17946798, 107667969, 660458787, 4081397547, 25274724105, 157744019799, 991384251102, 6254115981009, 39613066988527, 252017709962526, 1608980424431755
OFFSET
1,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..501 [Offset shifted by Georg Fischer, Nov 20 2024]
FORMULA
Logarithmic derivative of A166898.
a(n) ~ 5^(3/4) * phi^(4*n+3) / (2^(5/2) * Pi^(3/2) * n^(3/2)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Nov 27 2017
EXAMPLE
L.g.f.: L(x) = x + 3*x^2/2 + 25*x^3/3 + 111*x^4/4 + 456*x^5/5 + 2697*x^6/6 +...
exp(L(x)) = 1 + x + 2*x^2 + 10*x^3 + 38*x^4 + 137*x^5 + 646*x^6 + 3241*x^7 +...+ A166898(n)*x^n +...
MATHEMATICA
Table[Sum[Binomial[n - k, k]^4 *n/(n - k), {k, 0, Floor[n/2]}], {n, 1, 50}] (* G. C. Greubel, May 27 2016 *)
PROG
(PARI) a(n)=sum(k=0, n\2, binomial(n-k, k)^4*n/(n-k))
CROSSREFS
Cf. A166898, variants: A167539, A166895, A166897.
Sequence in context: A124245 A360788 A373682 * A201534 A059457 A165206
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 23 2009
EXTENSIONS
Offset changed to 1 by Georg Fischer, Nov 20 2024
STATUS
approved