login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..[n/2]} C(n-k,k)^4*n/(n-k), n>=1.
4

%I #14 Nov 20 2024 04:58:24

%S 1,3,25,111,456,2697,15961,86247,495781,3003738,17946798,107667969,

%T 660458787,4081397547,25274724105,157744019799,991384251102,

%U 6254115981009,39613066988527,252017709962526,1608980424431755

%N a(n) = Sum_{k=0..[n/2]} C(n-k,k)^4*n/(n-k), n>=1.

%H G. C. Greubel, <a href="/A166899/b166899.txt">Table of n, a(n) for n = 1..501</a> [Offset shifted by _Georg Fischer_, Nov 20 2024]

%F Logarithmic derivative of A166898.

%F a(n) ~ 5^(3/4) * phi^(4*n+3) / (2^(5/2) * Pi^(3/2) * n^(3/2)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - _Vaclav Kotesovec_, Nov 27 2017

%e L.g.f.: L(x) = x + 3*x^2/2 + 25*x^3/3 + 111*x^4/4 + 456*x^5/5 + 2697*x^6/6 +...

%e exp(L(x)) = 1 + x + 2*x^2 + 10*x^3 + 38*x^4 + 137*x^5 + 646*x^6 + 3241*x^7 +...+ A166898(n)*x^n +...

%t Table[Sum[Binomial[n - k, k]^4 *n/(n - k), {k, 0, Floor[n/2]}], {n, 1, 50}] (* _G. C. Greubel_, May 27 2016 *)

%o (PARI) a(n)=sum(k=0,n\2,binomial(n-k,k)^4*n/(n-k))

%Y Cf. A166898, variants: A167539, A166895, A166897.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Nov 23 2009

%E Offset changed to 1 by _Georg Fischer_, Nov 20 2024