login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059457
Numerator of Sum_{k=0..n} (-1)^k/(3*k+1).
2
1, 3, 25, 111, 1583, 5877, 118943, 1239213, 6500369, 6228669, 200696339, 3293919963, 125884243831, 122175729021, 5401896940303, 121054306890369, 868338554787383, 848589287072283, 867261322002923, 24637097377492167
OFFSET
0,2
COMMENTS
The denominators of Sum_{k = 0..n} (-1)^k/(3*k+1) agree with A051536 up to n = 44 but differ at n = 45. - Peter Bala, Feb 18 2024
LINKS
FORMULA
Sum_{k>=0} (-1)^k/(3*k+1) = (log(2)*sqrt(3) + Pi)/(3*sqrt(3)).
a(n) = the numerator of the continued fraction 1/(1 + 1^2/(3 + 4^2/(3 + ... + (3*n-2)^2/(3)))). - Peter Bala, Feb 18 2024
MATHEMATICA
Table[Numerator[Sum[(-1)^k/(3*k + 1), {k, 0, n}]], {n, 0, 50}] (* G. C. Greubel, Oct 04 2017 *)
PROG
(PARI) a(n)=numerator(sum(k=0, n, (-1)^k/(3*k+1)))
CROSSREFS
Sequence in context: A373682 A166899 A201534 * A165206 A095664 A215773
KEYWORD
frac,nonn
AUTHOR
Benoit Cloitre, Oct 19 2002
EXTENSIONS
Corrected by T. D. Noe, Oct 25 2006
STATUS
approved