OFFSET
0,2
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..100
EXAMPLE
Let G(x) = 1 + x + x^3 + x^6 + x^10 + x^15 + x^21 + x^28 + x^36 +...
then a(n) = the coefficient of x^(n*(n+1)/2) in G(x)^n.
Coefficients of x^k in powers of G(x)^n begin:
n\k...0...1..2..3..4..5...6...7...8...9..10..11..12...13..14...15...16...
n=1: [(1),1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0,...];
n=2: [1, (2),1, 2, 2, 0, 3, 2, 0, 2, 2, 2, 1, 2, 0, 2, 4,...];
n=3: [1, 3, 3,(4),6, 3, 6, 9, 3, 7, 9, 6, 9, 9, 6, 6, 15,...];
n=4: [1, 4, 6, 8,13,12,(14),24, 18, 20, 32, 24, 31, 40, 30, 32, 48,...];
n=5: [1, 5,10,15,25,31, 35, 55, 60, 60,(90),90, 95, 135,125, 126, 170,...];
n=6: [1, 6,15,26,45,66, 82,120,156,170,231,276,290, 390,435,(438),561,...]; ...
the coefficients in parenthesis form the initial terms of this sequence.
PROG
(PARI) {a(n)=local(G=sum(m=0, n+1, x^(m*(m+1)/2))+x*O(x^(n*(n+1)/2))); polcoeff(G^(n+1), n*(n+1)/2)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 18 2013
STATUS
approved